1,208 research outputs found

    The American Joint Replacement Registry and Arthroplasty Today

    Get PDF

    Elaboration of the Messenger Transport Organizer Pathway for Localization of RNA to the Vegetal Cortex ofXenopusOocytes

    Get PDF
    AbstractPrevious studies demonstrated that there were two pathways, the messenger transport organizer (METRO) or early and the Vg1 or late, which function during stages 1 to 3 of oogenesis for the localization of RNAs at the vegetal cortex ofXenopusoocytes. In the present study we analyzed the properties of the METRO pathway, which localizes Xlsirt, Xcat2, and Xwnt11 RNAs to a specific region of the vegetal cortex during stage 1 of oogenesis. A combination of methodologies involving both fixed material and living oocytes was used to analyze RNA localization. We show that in early diplotene pre-stage 1 oocytes (25–50 μm in diameter) both endogenous and injected exogenous METRO RNAs translocated to multiple mitochondrial aggregates (pre-mitochondrial clouds) that surround the germinal vesicle (GV). However, by early stage 1 (diplotene oocytes, 50–200 μm), all three of the RNAs discriminated between the different clouds and translocated exclusively within the METRO of a single mitochondrial cloud. Therefore, in stage 1 diplotene oocytes there is a unique mechanism causing a change in the intrinsic property of the mitochondrial clouds which designates one of them as the RNA transport vehicle. During translocation through the cytoplasm Xlsirt and Xcat2 RNAs were detected associated with cytoplasmic particles of different morphologies. Additionally, we also found that the translocation of RNAs through the early or METRO pathway, unlike that of the late pathway, occurred in the absence of intact microtubule and actin microfilament cytoskeletal elements. This supports a cytoskeletal-independent model for localization of RNAs through the METRO pathway

    Evolutionary design of a full-envelope full-authority flight control system for an unstable high-performance aircraft

    Get PDF
    The use of an evolutionary algorithm in the framework of H1 control theory is being considered as a means for synthesizing controller gains that minimize a weighted combination of the infinite norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements) at the same time. The case study deals with a complete full-authority longitudinal control system for an unstable high-performance jet aircraft featuring (i) a stability and control augmentation system and (ii) autopilot functions (speed and altitude hold). Constraints on closed-loop response are enforced, that representing typical requirements on airplane handling qualities, that makes the control law synthesis process more demanding. Gain scheduling is required, in order to obtain satisfactory performance over the whole flight envelope, so that the synthesis is performed at different reference trim conditions, for several values of the dynamic pressure, used as the scheduling parameter. Nonetheless, the dynamic behaviour of the aircraft may exhibit significant variations when flying at different altitudes, even for the same value of the dynamic pressure, so that a trade-off is required between different feasible controllers synthesized at different altitudes for a given equivalent airspeed. A multiobjective search is thus considered for the determination of the best suited solution to be introduced in the scheduling of the control law. The obtained results are then tested on a longitudinal non-linear model of the aircraft

    Braess's Paradox in Wireless Networks: The Danger of Improved Technology

    Full text link
    When comparing new wireless technologies, it is common to consider the effect that they have on the capacity of the network (defined as the maximum number of simultaneously satisfiable links). For example, it has been shown that giving receivers the ability to do interference cancellation, or allowing transmitters to use power control, never decreases the capacity and can in certain cases increase it by Ω(log(ΔPmax))\Omega(\log (\Delta \cdot P_{\max})), where Δ\Delta is the ratio of the longest link length to the smallest transmitter-receiver distance and PmaxP_{\max} is the maximum transmission power. But there is no reason to expect the optimal capacity to be realized in practice, particularly since maximizing the capacity is known to be NP-hard. In reality, we would expect links to behave as self-interested agents, and thus when introducing a new technology it makes more sense to compare the values reached at game-theoretic equilibria than the optimum values. In this paper we initiate this line of work by comparing various notions of equilibria (particularly Nash equilibria and no-regret behavior) when using a supposedly "better" technology. We show a version of Braess's Paradox for all of them: in certain networks, upgrading technology can actually make the equilibria \emph{worse}, despite an increase in the capacity. We construct instances where this decrease is a constant factor for power control, interference cancellation, and improvements in the SINR threshold (β\beta), and is Ω(logΔ)\Omega(\log \Delta) when power control is combined with interference cancellation. However, we show that these examples are basically tight: the decrease is at most O(1) for power control, interference cancellation, and improved β\beta, and is at most O(logΔ)O(\log \Delta) when power control is combined with interference cancellation

    Systematics of q anti-q states in the (n,M^2) and (J,M^2) planes

    Full text link
    In the mass region up to M < 2400 MeV we systematise mesons on the plots (n,M^2) and (J,M^2), thus setting their classification in terms of n^{2S+1}L_J q anti-q states. The trajectories on the (n,M^2)-plots are drawn for the following (IJ^{PC})-states: a_0(10^{++}), a_1(11^{++}), a_2(12^{++}), a_3(13^{++}), a_4(14^{++}), pi(10^{-+}), pi_2(12^{-+}), eta(00^{-+}), eta_2(02^{-+})$, rho(11^{--}), f_0(00^{++}), f_2(02^{++}). All trajectories are linear, with nearly the same slopes. At the (J,M^2)-plot we set out meson states for leading and daughter trajectories: for pi, rho, a_1, a_2 and P'.Comment: 6 pages, LaTeX, 16 EPS figures, epsfig.st

    Meson model for f_0(980) production in peripheral pion-nucleon reactions

    Get PDF
    The Juelich model for pion-pion-scattering, based on an effective meson-meson Lagrangian is applied to the analysis of the S-wave production amplitudes derived from the BNL E852 experiment pi^- p -> pi^0 pi^0 n for a pion momentum of 18.3 GeV. The unexpected strong dependence of the S-wave partial wave amplitude on the momentum transfer between the proton and neutron in the vicinity of the f_0(980) resonance is explained in our analysis as interference effect between the correlated and uncorrelated pi^0 pi^0 pairs.Comment: 6 pages, 7 figures, formulas added, typos removed, new figure

    Formation of the internal structure of solids under severe action

    Full text link
    On the example of a particular problem, the theory of vacancies, a new form of kinetic equations symmetrically incorporation the internal and free energies has been derived. The dynamical nature of irreversible phenomena at formation and motion of defects (dislocations) has been analyzed by a computer experiment. The obtained particular results are extended into a thermodynamic identity involving the law of conservation of energy at interaction with an environment (the 1st law of thermodynamics) and the law of energy transformation into internal degree of freedom (relaxation). The identity is compared with the analogous Jarzynski identity. The approach is illustrated by simulation of processes during severe plastic deformation, the Rybin kinetic equation for this case has been derived.Comment: 9 pages, 5 figure

    Systematization of tensor mesons and the determination of the 2++2^{++} glueball

    Full text link
    It is shown that new data on the (JPC=2++)(J^{PC}=2^{++})-resonances in the mass range M17002400M\sim1700-2400 MeV support the linearity of the (n,M2)(n,M^2)-trajectories, where nn is the radial quantum number of quark--antiquark state. In this way all vacancies for the isoscalar tensor qqˉq\bar q-mesons in the range up to 2450 MeV are filled in. This allows one to fix the broad f2f_2-state with M=2000±30M=2000\pm30 MeV and Γ=530±40\Gamma=530\pm40 MeV as the lowest tensor glueball. PACS numbers: 14.40.-n, 12.38.-t, 12.39.-MkComment: 10 pages, 1 figur

    Inhibition of the anaphase-promoting complex by the Xnf7 ubiquitin ligase

    Get PDF
    Degradation of specific protein substrates by the anaphase-promoting complex/cyclosome (APC) is critical for mitotic exit. We have identified the protein Xenopus nuclear factor 7 (Xnf7) as a novel APC inhibitor able to regulate the timing of exit from mitosis. Immunodepletion of Xnf7 from Xenopus laevis egg extracts accelerated the degradation of APC substrates cyclin B1, cyclin B2, and securin upon release from cytostatic factor arrest, whereas excess Xnf7 inhibited APC activity. Interestingly, Xnf7 exhibited intrinsic ubiquitin ligase activity, and this activity was required for APC inhibition. Unlike other reported APC inhibitors, Xnf7 did not associate with Cdc20, but rather bound directly to core subunits of the APC. Furthermore, Xnf7 was required for spindle assembly checkpoint function in egg extracts. These data suggest that Xnf7 is an APC inhibitor able to link spindle status to the APC through direct association with APC core components
    corecore